

2004 Mathematics

Advanced Higher

Solutions to Advanced Higher Mathematics Paper

1. (a)
$$f(x) = \cos^2 x e^{\tan x}$$

 $f'(x) = 2(-\sin x)\cos x e^{\tan x} + \cos^2 x \sec^2 x e^{\tan x}$

1 for Product Rule 2 for accuracy

$$= (1 - \sin 2x)e^{\tan x}$$

$$f'\left(\frac{\pi}{4}\right) = \left(1 - \sin\frac{\pi}{2}\right)e^{\tan\pi/4} = 0.$$

(b)
$$g(x) = \frac{\tan^{-1} 2x}{1 + 4x^2}$$
$$g'(x) = \frac{\frac{2}{1 + 4x^2} (1 + 4x^2) - \tan^{-1} 2x (8x)}{(1 + 4x^2)^2}$$

1 for Product Rule 2 for accuracy

$$= \frac{2 - 8x \tan^{-1} 2x}{(1 + 4x^2)^2}$$

2.
$$(a^2 - 3)^4 = (a^2)^4 + 4(a^2)^3(-3) + 6(a^2)^2(-3)^2 + 4(a^2)(-3)^3 + (-3)^4$$

1 for binomial coefficients

$$= a^8 - 12a^6 + 54a^4 - 108a^2 + 81$$

1 for powers

1 for coefficients

3.
$$x = 5\cos\theta \Rightarrow \frac{dx}{d\theta} = -5\sin\theta$$
$$y = 5\sin\theta \Rightarrow \frac{dy}{d\theta} = 5\cos\theta$$
1

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{5\cos\theta}{-5\sin\theta}$$

When
$$\theta = \frac{\pi}{4}, \frac{dy}{dx} = -\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = -1,$$

$$x = \frac{5}{\sqrt{2}}, y = \frac{5}{\sqrt{2}}$$

so an equation of the tangent is

$$y - \frac{5}{\sqrt{2}} = -\left(x - \frac{5}{\sqrt{2}}\right)$$

i.e. $x + y = 5\sqrt{2}$.

4.
$$z^{2}(z+3) = (1+4i-4)(1+2i+3)$$
$$= (-3+4i)(4+2i)$$

$$= (-3 + 4i)(4 + 2i)$$

$$= -20 + 10i$$
1

$$z^3 + 3z^2 - 5z + 25 = z^2(z + 3) - 5z + 25$$
 1 for a method

$$= -20 + 10i - 5 - 10i + 25 = 0$$

Note: direct substitution of 1 + 2i into $z^3 + 3z^2 - 5z + 25$ was acceptable.

Another root is the conjugate of z, i.e. 1 - 2i.

The corresponding quadratic factor is $((z-1)^2+4)=z^2-2z+5$.

$$z^{3} + 3z^{2} - 5z + 25 = (z^{2} - 2z + 5)(z + 5)$$

 $z = -5$

Note: any valid method was acceptable.

5.

$$\frac{1}{x^2 - x - 6} = \frac{A}{x - 3} + \frac{B}{x + 2}$$
 1 for method
$$= \frac{1}{5(x - 3)} - \frac{1}{5(x + 2)}$$

$$\int_0^1 \frac{1}{x^2 - x - 6} \, dx = \frac{1}{5} \int_0^1 \frac{1}{|x - 3|} - \frac{1}{|x + 2|} \, dx \qquad \textbf{1 for method}$$

1 for accuracy

1

1 for a method

1

$$= \frac{1}{5} [\ln|x - 3| - \ln|x + 2|]_0^1$$

$$= \frac{1}{5} \left[\ln \frac{|x - 3|}{|x + 2|} \right]_0^1$$

$$= \frac{1}{5} \left[\ln \frac{2}{3} - \ln \frac{3}{2} \right]$$
1

$$= \frac{1}{5} \ln \frac{4}{9} \approx -0.162$$

6.

$$M_1 = \begin{pmatrix} \cos\frac{\pi}{2} - \sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$M_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$M_2M_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

The transformation represented by M_2M_1 is reflection in y = -x.

7.
$$f(x) = e^{x} \sin x \qquad f(0) = 0$$

$$f'(x) = e^{x} \sin x + e^{x} \cos x \qquad f'(0) = 1 \qquad 1$$

$$f'''(x) = e^{x} \sin x + e^{x} \cos x - e^{x} \sin x + e^{x} \cos x \qquad f'''(0) = 2 \qquad 1$$

$$= 2e^{x} \cos x \qquad f'''(0) = 2 \qquad 1$$

$$f(x) = 2e^{x} \cos x - 2e^{x} \sin x \qquad f'''(0) = 2 \qquad 1$$

$$f(x) = f(0) + f'(0)x + f''(0) \frac{x^{2}}{2!} + f'''(0) \frac{x^{3}}{3!} + \dots \qquad 1$$

$$e^{x} \sin x = x + x^{2} + \frac{1}{3}x^{3} - \dots \qquad 1$$
OR
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots \qquad 1$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots \qquad 1$$

$$e^{x} \sin x = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots\right) \left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!}\right) 1 - \mathbf{method}$$

$$= x - \frac{x^{3}}{6} + x^{2} - \frac{x^{4}}{6} + \frac{x^{3}}{2} - \frac{x^{5}}{12} + \frac{x^{4}}{6} + \dots \qquad 1$$

$$= x + x^{2} + \frac{x^{3}}{3} - \dots \qquad 1$$

8.
$$231 = 13 \times 17 + 10$$
 1 for method
$$17 = 1 \times 10 + 7$$

$$10 = 1 \times 7 + 3$$

$$7 = 2 \times 3 + 1$$
 1

Thus the highest common factor is 1.

$$1 = 7 - 2 \times 3$$

$$= 7 - 2 \times (10 - 7) = 3 \times 7 - 2 \times 10$$

$$= 3 \times (17 - 10) - 2 \times 10 = 3 \times 17 - 5 \times 10$$

$$= 3 \times 17 - 5 \times (231 - 13 \times 17) = 68 \times 17 - 5 \times 231.$$
1

So x = -5 and y = 68.

9.
$$x = (u - 1)^{2} \Rightarrow dx = 2(u - 1)du$$

$$\int \frac{1}{(1 + \sqrt{x})^{3}} dx = \int \frac{2(u - 1)}{u^{3}} du$$

$$= 2 \int (u^{-2} - u^{-3}) du$$

$$= 2 \left(\frac{-1}{u} + \frac{1}{2u^{2}}\right) + c$$

$$= \left(\frac{1}{(1 + \sqrt{x})^{2}} - \frac{2}{(1 + \sqrt{x})}\right) + c$$
1

10.
$$f(x) = x^4 \sin 2x$$
 so

$$f(-x) = (-x)^4 \sin(-2x)$$

$$= -x^4 \sin 2x$$

$$= -f(x)$$
1

1

So $f(x) = x^4 \sin 2x$ is an odd function.

Note: a sketch given with a comment and correct answer, give full marks. A sketch without a comment, gets a maximum of two marks.

11.

$$V = \int_{a}^{b} \pi y^{2} dx$$

$$= \pi \int_{0}^{1} e^{-4x} dx$$

$$= \pi \left[-\frac{e^{-4x}}{4} \right]_{0}^{1}$$

$$= \pi \left[-\frac{1}{4e^{4}} + \frac{1}{4} \right]$$

$$= \frac{\pi}{4} \left[1 - \frac{1}{e^{4}} \right] \approx 0.7706$$
1
1
1

LHS =
$$\frac{d}{dx}(xe^x) = xe^x + 1e^x = (x + 1)e^x$$

$$RHS = (x + 1)e^x$$

So true when n = 1.

Assume
$$\frac{d^k}{dx^k}(xe^x) = (x + k)e^x$$

Consider

$$\frac{d^{k+1}}{dx^{k+1}}(xe^x) = \frac{d}{dx} \left(\frac{d^k}{dx^k} (xe^x) \right)$$

$$= \frac{d}{dx} \left((x+k)e^x \right)$$

$$= e^x + (x+k)e^x$$

$$= (x+(k+1))e^x$$
1

So true for k means it is true for (k + 1), therefore it is true for all integers $n \ge 1$. 1

13. (a)
$$y = \frac{x-3}{x+2} = 1 - \frac{5}{x+2}$$

Vertical asymptote is x = -2.

Horizontal asymptote is y = 1.

(b)
$$\frac{dy}{dx} = \frac{5}{(x+2)^2}$$

$$\neq 0$$
1

(c)
$$\frac{d^2y}{dx^2} = \frac{-10}{(x+2)^3} \neq 0$$

So there are no points of inflexion.

(d) 1

The asymptotes are
$$x = 1$$
 and $y = -2$.

The domain must exclude $x = 1$.

Note: candidates are not required to obtain a formula for f^{-1} .

14. (a)

$$\overrightarrow{AB} = -\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{AC} = 0\mathbf{i} + \mathbf{j} - 3\mathbf{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & -4 \\ 0 & 1 & -3 \end{vmatrix} = -2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$$
 { 1 for method 1 for accuracy

$$-2x - 3y - z = c (= -2 + 0 - 3 = -5)$$

i.e. an equation for
$$\pi_1$$
 is $2x + 3y + z = 5$.

Let an angle be θ , then

$$\cos \theta = \frac{(2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k})}{\sqrt{4 + 9 + 1}\sqrt{1 + 1 + 1}}$$

$$= \frac{2 + 3 - 1}{\sqrt{14 \times 3}}$$

$$= \frac{4}{\sqrt{42}}$$

$$\theta \approx 51.9^{\circ}$$

Note: an acute angle is required.

(b) Let
$$\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2} = t$$
.

Then $x = 4t + 11$; $y = 5t + 15$; $z = 2t + 12$
 $(4t + 11) + (5t + 15) - (2t + 12) = 0$
 $7t = -14 \Rightarrow t = -2$
 $x = 3$; $y = 5$ and $z = 8$.

15.

(a)
$$x \frac{dy}{dx} - 3y = x^4$$

$$\frac{dy}{dx} - \frac{3}{x}y = x^3$$

$$= x^{-3}.$$

$$\frac{1}{x^3} \frac{dy}{dx} - \frac{3}{x^4}y = 1$$

$$\frac{d}{dx} \left(\frac{1}{x^3}y\right) = 1$$

$$\frac{y}{x^3} = x + c$$

$$y = (x + c)x^3$$

$$y = 2 \text{ when } x = 1, \text{ so}$$

$$2 = 1 + c$$

$$c = 1$$

$$y = (x + 1)x^3$$
(b)
$$y \frac{dy}{dx} - 3x = x^4$$

$$y \frac{dy}{dx} = x^4 + 3x$$

$$y \frac{dy}{dx} = x^4 + 3x$$

$$y \frac{dy}{dx} = x^4 + 3x$$

$$y \frac{dy}{dx} = x^5 + \frac{3x^2}{2} + c'$$
1

When x = 1, y = 2 so $c' = 2 - \frac{1}{5} - \frac{3}{2} = \frac{3}{10}$ and so

$$y = \sqrt{2\left(\frac{x^5}{5} + \frac{3x^2}{2} + \frac{3}{10}\right)}.$$

16. (a) The series is arithmetic with
$$a = 8$$
, $d = 3$ and $n = 17$.

$$S = \frac{n}{2} \{ 2a + (n-1)d \} = \frac{17}{2} \{ 16 + 16 \times 3 \} = 17 \times 32 = 544$$
 1

(b)
$$a = 2$$
, $S_3 = a + ar + ar^2 = 266$. Since $a = 2$

$$r^2 + r + 1 = 133$$

$$r^2 + r - 132 = 0$$

$$(r-11)(r+12)=0$$

$$r = 11$$
 (since terms are positive).

Note: other valid equations could be used.

$$2(2a + 3 \times 2) = a(1 + 2 + 2^{2} + 2^{3})$$

$$4a + 12 = 15a$$

$$11a = 12$$

$$a = \frac{12}{11}$$
1

The sum
$$S_B = \frac{12}{11} (2^n - 1)$$
 and $S_A = \frac{n}{2} (\frac{24}{11} + 2(n - 1)) = n(\frac{1}{11} + n)$.

1 for a valid strategy

1

$$n$$
 4
 5
 6
 7

 S_B
 $\frac{180}{11}$
 $\frac{372}{11}$
 $\frac{756}{11}$
 $\frac{1524}{11}$
 S_A
 $\frac{180}{11}$
 $\frac{280}{11}$
 $\frac{402}{11}$
 $\frac{546}{11}$

The smallest n is 7.

2004 Applied Mathematics

Advanced Higher – Section A

Advanced Higher Applied Mathematics 2004 Solutions for Section A (Statistics 1 and 2)

A1.	(a)	Stratified	1						
	(1.)	and Quota [or Quota (convenience)]	1						
	(b)	Approach (a) should be best	1						
		since (b) is not random (other forms e.g. Glasgow not typical	, biased) 1						
A2.	(a)	1 for distribution							
			1 for parameters						
	(b)	$P(F \ge 3) = 1 - P(F \le 2)$	1						
		= 1 - (0.6809 + 0.2620 + 0.0501)	1						
		= 0.0070	1						
		Notes: applying a Poisson distribution loses (at least) one modistribution loses two marks.	ırk; a Normal						
	(c)	Approximate using the $Poi(0.384)$	1 for distribution						
			1 for parameters						
A3.	Ass	ume that yields are normally distributed.	1						
	[Ra	ndom or independent will not do.]							
	$\bar{x} =$	404.2; s = 10.03	1						
	t =	2.776	1						
		A 95% confidence interval for the mean yield, μ , is given by:—							
	$\bar{x} \pm$	$ \frac{x}{x} \pm t \frac{s}{\sqrt{n}} $ $ 404.2 \pm 2.776 \frac{10.03}{\sqrt{5}} $							
		\sqrt{n} 10.03							
	404	$2 \pm 2.776 \frac{10.05}{\sqrt{5}}$							
		404.2 ± 12.45							
		391.75, 416.65).	1						
	,	fact that the confidence interval does not include 382							
	prov	vides evidence, at the 5% level of significance, of a	1						
	chai	nge in the mean yield. (Stating it is changed loses one mark.)							
	Note	e: the third and fourth marks are lost if a z interval is used.							
A4.	TNI	E = 3% of 500 = 15	1						
	Wit	h maximum allowable standard deviation							
	P(w	yeight < 485) = 0.025	1						
	\Rightarrow	$\frac{485 - 505}{1} = -1.96$	1,1						
		σ_{20}	,						
	\Rightarrow	$\frac{485 - 505}{\sigma} = -1.96$ $\sigma = \frac{20}{1.96} = 10.2$	1						
		re will be a small probability of obtaining a content	د.						
	we1	ght less than 470g with the normal model.	1						

A5. Assume that the distributions of times Before and After have the same shape.

Notes: a Normal distribution with the same shape is a valid comment.

Independent, random, Normal (without shape) are not valid.

Null hypothesis H_0 : Median After = Median Before

Alternative hypothesis H_1 : Median After < Median Before

Time	19	29	31	35	37	39	39	41	42	43	45	52	59	64
Period	A	A	В	A	A	В	A	A	В	В	A	В	В	В
Rank	1	2	3	4	5	6.5	6.5	8	9	10	11	12	13	14

1

1

1

1

1

1

1

1

1

1

Rank sum for After times = 37.5

$$W - \frac{1}{2}n(n+1) = 37.5 - 28 = 9.5$$

$$P(W - \frac{1}{2}n(n + 1) < 10)$$

$$=\frac{125}{3432}$$

$$= 0.036$$

Since this value is *less than* 0.05 the null hypothesis

would be rejected in favour of the alternative,

indicating evidence of improved performance.

Notes:

As the computed value, 9.5, is not in the tables, a range of values for the probability was acceptable.

A Normal approximation was accepted.

A6.

Cream	A	В	C
Obs. No. of purchasers	66	99	75
Exp. No. of purchasers	80	80	80

$$X^2 = \sum \frac{(O - E)^2}{E}$$

$$= \frac{(66 - 80)^2}{80} + \frac{(99 - 80)^2}{80} + \frac{(75 - 80)^2}{80}$$

$$= 2.45 + 4.5125 + 0.3125 = 7.275$$

with 2 d.f. 1

The critical value of chi-squared at the 5% level is 5.991 so the null hypothesis would be rejected.

1

i.e. there is evidence of a preference.

The fact that the p-value is less than 0.05 confirms rejection of the null hypothesis at the 5% level of significance.

Note: using a two-tail test loses a mark.

A7. The fitted value is 13.791 (a) with residual 10.209.

(b) The wedge-shaped plot casts doubt on the assumption of constant variance of Y_i . (i.e. variance not constant) 1

1

1

1

1

1

(c) Satisfactory now since *variance* seems to be *more constant*. 1 Note: A phrase such as 'more randomly scattered' is acceptable.

The residuals are normally distributed. 1 (d)

A8. (a)

Pre	36	45	30	63	48	52	44	44	45	51	39	44
Post	39	42	33	70	53	51	48	51	51	51	42	50
Post – Pre	3	-3	3	7	5	-1	4	7	6	0	3	6
Sign	1	-1	1	1	1	-1	1	1	1	0	1	1

Assume that differences are independent. 1

 H_0 : Median (Post – Pre) = 0 [or $\eta_d = 0$]

 H_1 : Median (Post – Pre) > 0 [or $\eta_d > 0$] 1

Under H_0 the differences Bin (11,0.5) with b = 2.

$$P(B \le 2) = \left(C_0^{11} + C_1^{11} + C_2^{11}\right) 0.5^{11}$$

$$= (1 + 11 + 55)0.5^{11} = 0.0327.$$

Since 0.0327 < 0.05 the null hypothesis is rejected and there 1 1

is evidence that the median PCS-12 score has gone up.

Note: applying a two-tailed test loses a mark.

(b)
$$H_0: \mu_{Post} = 50$$

$$H_1: \mu_{\text{Post}} \neq 50$$

 $\bar{x} = 48.42$

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} = \frac{48.42 - 50}{10 / \sqrt{12}} = -0.55.$$
 1,1

The critical region is |z| > 1.96 at the 5% level of significance. Since -0.55 is not in the critical region, the null hypothesis is accepted indicating that the Post-operation scores are consistent with a population mean of 50.

Note: a correct use of probability comparisons gets full marks.

A9. (a) P (Alaskan fish classified as Canadian)
= P(X > 120 | X ~ N(100,20²)
= P(Z >
$$\frac{120 - 100}{20}$$
)

1

- (b) The probability is the same as in (a) because of symmetry.
- (c) P (Canadian origin | Alaskan predicted)

$$= \frac{P(Alaskan \text{ predicted and Canadian origin})}{P(Alaskan \text{ predicted})}$$
1

$$= \frac{P(Alaskan predicted but Canadian origin)}{P(Ala pred and Alaskan) + P(Ala pred but Canadian)}$$

$$= \frac{0.4 \times 0.1587}{0.6 \times 0.8413 + 0.4 \times 0.1587}$$

$$= \frac{0.06348}{0.50478 + 0.06348}$$

$$= 0.112.$$
1,1

Note: Alternative methods acceptable e.g. Venn or Tree Diagrams

A10. The number, X, of inaccurate invoices in samples of n will have the Bin (n, p) distribution so

$$V(X) = npq$$

$$= np(1 - p)$$

$$\Rightarrow V (Proportion) = V \left(\frac{1}{n}X\right) = \frac{1}{n^2} V(X)$$

$$= \frac{p(1-p)}{n}$$
1

 \Rightarrow Standard deviation of Proportion = $\sqrt{\frac{p(1-p)}{n}}$.

(a) UCL =
$$p + 3\sqrt{\frac{p(1-p)}{n}}$$

= $0.12 + 3\sqrt{\frac{0.12 \times 0.88}{150}}$
= $0.12 + 0.08 = 0.20$. 1
LCL = $0.12 - 0.08 = 0.04$

- (b) The fact that the point for Week 30 falls below the lower chart limit provides evidence of a drop in the proportion of inaccurate invoices.
 1 or: 8 consecutive points fell below the centre line.
- (c) A new chart should be constructed (or set new limits)
 using an estimate of p for calculation of limits which is
 based on data collected since the process change.

2004 Applied Mathematics

Advanced Higher – Section B

Advanced Higher Applied Mathematics 2004 Solutions for Section B (Numerical Analysis 1 and 2)

B1.
$$f(x) = \ln(2-x)$$
 $f'(x) = \frac{-1}{(2-x)}$ $f''(x) = \frac{-1}{(2-x)^2}$ $f'''(x) = \frac{-2}{(2-x)^3}$ **1**

Taylor polynomial is

$$p(1 + h) = \ln 1 - h - \frac{h^2}{2} - \frac{2h^3}{6}$$
$$= -h - \frac{h^2}{2} - \frac{h^3}{3}$$

For
$$\ln 1.1$$
, $h = -0.1$ and $p(0.9) = 0.1 - 0.005 + 0.00033 = 0.0953$.

$$p(a + h) = \ln(2 - a) - \frac{1}{2 - a}h$$

1

Hence expect f(x) to be more sensitive in I_2 since coefficient of h is much larger.

B2. L(2.5)

$$= \frac{(2\cdot5 - 1\cdot5)(2\cdot5 - 3\cdot0)(2\cdot5 - 4\cdot5)}{(0\cdot5 - 1\cdot5)(0\cdot5 - 3\cdot0)(0\cdot5 - 4\cdot5)} \cdot 1\cdot737 + \frac{(2\cdot5 - 0\cdot5)(2\cdot5 - 3\cdot0)(2\cdot5 - 4\cdot5)}{(1\cdot5 - 0\cdot5)(1\cdot5 - 3\cdot0)(1\cdot5 - 4\cdot5)} \cdot 2\cdot412$$

$$+ \frac{(2\cdot5 - 0\cdot5)(2\cdot5 - 1\cdot5)(2\cdot5 - 4\cdot5)}{(3\cdot0 - 0\cdot5)(3\cdot0 - 1\cdot5)(3\cdot0 - 4\cdot5)} \cdot 3\cdot284 + \frac{(2\cdot5 - 0\cdot5)(2\cdot5 - 1\cdot5)(2\cdot5 - 3\cdot0)}{(4\cdot5 - 0\cdot5)(4\cdot5 - 1\cdot5)(4\cdot5 - 3\cdot0)} \cdot 2\cdot797 \cdot 2$$

$$= -\frac{1 \times 1\cdot737}{10} + \frac{2 \times 2\cdot412}{4\cdot5} + \frac{4 \times 3\cdot284}{2\cdot5 \times 2\cdot25} - \frac{1 \times 2\cdot797}{18}$$

$$= -0\cdot1737 + 1\cdot0720 + 2\cdot3353 - 0\cdot1554 = 3\cdot078$$

B3.
$$\Delta^2 f_0 = \Delta f_1 - \Delta f_0 = (f_2 - f_1) - (f_1 - f_0) = f_2 - 2f_1 + f_0$$

Maximum rounding error = $\varepsilon + 2\varepsilon + \varepsilon = 4\varepsilon$.

$$\Delta^2 f_0 = 2.618 - 2 \times 2.369 + 2.124 = 0.004$$

and
$$4\varepsilon = 4 \times 0.0005 = 0.002$$
.

$$\Delta^2 f_0$$
 appears to be significantly different from 0.

B4. (a) Difference table is:

$$i$$
 x $f(x)$ diff1 diff2 diff3
0 0 1.023 352 -95 3
1 0.5 1.375 257 -92 -4
2 1 1.632 165 -96
3 1.5 1.797 69
4 2 1.866

(b) p = 0.3

$$f(0.65) = 1.375 + 0.3(0.257) + \frac{(0.3)(-0.7)}{2}(-0.092)$$

$$= 1.375 + 0.077 + 0.010 = 1.462$$

2

1

4

(or, with p = 1.3, 1.023 + 0.458 - 0.019).

B5.
$$f(x) = (((x - 1.1)x + 1.7)x)x - 3.2$$
 and $f(1.3) = 0.1124$.
Since f is positive and increasing at $x = 1.3$, root appears to occur for $x < 1.3$.
 $f(x)_{\min} = (((x - 1.15)x + 1.65)x)x - 3.25$
 $f(1.3)_{\min} = -0.132$ (opposite sign), so root may occur for $x > 1.3$.

B6. In diagonally dominant form,

$$4x_1 - 0.3x_2 + 0.5x_3 = 6.1$$

 $0.5x_1 - 7x_2 + 0.7x_3 = 3.7$
 $0.3x_1 + 2x_3 = 8.6.$

The diagonal coefficients of *x* are large relative to the others, so system is likely to be stable. (Or, this implies equations are highly linearly independent, or, determinant of system is large.)

Rewritten equations are:

$$x_1 = (6.1 + 0.3x_2 - 0.5x_3)/4$$

$$x_2 = (-3.7 + 0.5x_2 + 0.7x_3)/7$$

$$x_3 = (8.6 - 0.3x_1)/2$$

Gauss Seidel table is:

Hence (2 decimal places) $x_1 = 1.00$; $x_2 = -0.04$; $x_3 = 4.15$.

B7. Tableau is:
$$\begin{pmatrix} 2.6 & 0 & 1.622 & 0.742 & 0.479 & 0 \\ 0 & 6.469 & 1.923 & -0.538 & 1 & 0 \\ 0 & 0 & 3.604 & -0.415 & 0.128 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix}
2.6 & 0 & 0 & 0.929 & 0.421 & -0.450 \\
0 & 6.469 & 0 & -0.317 & 0.932 & -0.534 \\
0 & 0 & 3.604 & -0.415 & 0.128 & 1
\end{pmatrix} (R_1 - 1.622R_3/3.604)$$

$$(R_2 - 1.923R_3/3.604)$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0.357 & 0.162 & -0.173 \\ 0 & 1 & 0 & -0.049 & 0.144 & -0.083 \\ 0 & 0 & 1 & -0.115 & 0.036 & 0.277 \end{pmatrix}$$
 (dividing by diagonal elements) **1**

Hence
$$\mathbf{A}^{-1} = \begin{pmatrix} 0.36 & 0.16 & -0.17 \\ -0.05 & 0.14 & -0.08 \\ -0.12 & 0.04 & 0.28 \end{pmatrix}$$
.

B8. (a)

1

1

Global truncation error is first order.

(b) Predictor-corrector calculation (with one corrector application) is:

$$x$$
 y $y' = \sqrt{x^2 + 2y - 1} - 1$ y_P $y_{P'}$ $\frac{1}{2}h(y' + y_{P'})$
1 1 0·4142 1·0414 0·5142 0·0464
1·1 1·0464

The difference in the (rounded) second decimal place between the values of $x(1\cdot1)$ in the two calculations suggests that the second decimal place cannot be relied upon in the first calculation.

B9. Trapezium rule calculation is:

$\boldsymbol{\mathcal{X}}$	f(x)	m	$mf_1(x)$	$mf_2(x)$
1	1.2690	1	1.2690	1.2690
1.25	1.1803	2		2.3606
1.5	0.9867	2	1.9734	1.9734
1.75	0.6839	2		1.3678
2	0.2749	1	0.2749	0.2749
			3.5173	7.2457

Hence $I_1 = 3.5173 \times 0.5/2 = 0.8793$ and $I_2 = 7.2457 \times 0.25/2 = 0.9057$.

 $|\max \text{ truncation error }| = 1 \times 0.1092/12 \approx 0.009$ Hence $I_2 = 0.91 \text{ or } 0.9$.

2

Expect to reduce error by factor 4.

With n strips and step size 2h, Taylor series for expansion of an integral I approximated by the trapezium rule is:

$$I = I_n + C(2h)^2 + D(2h)^4 + \dots = I_n + 4Ch^2 + 16Dh^4 + \dots$$
 (a)

With
$$2n$$
 strips and step size h , we have: $I = I_{2n} + Ch^2 + Dh^4 + \dots$ (b) 2

4(b) – (a) gives
$$3I = 4I_{2n} - I_n - 12Dh^4 + ...$$

i.e. $I \approx (4I_{2n} - I_n)/3 = I_{2n} + (I_{2n} - I_n)/3$

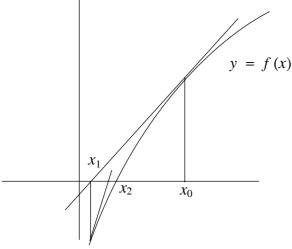
$$I_R = (4 \times 0.9057 - 0.8793)/3 = 0.914$$

B10. Gradient of
$$y = f(x)$$
 at x_0 is $f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$.

1

Hence $x_1 - x_0 = -\frac{f(x_0)}{f'(x_0)}$, i.e. $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$.

Likewise $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ and in general $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

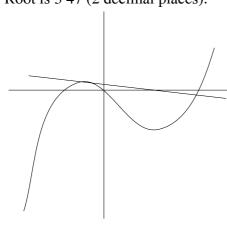


1

1

1

 $f(x) = e^{-x} + x^4 - 2x^3 - 5x^2 - 1$ and $f'(x) = -e^{-x} + 4x^3 - 6x^2 - 10x$; $x_0 = 3.5$ Root is 3.47 (2 decimal places).



In a situation such as diagrammed, the Newton-Raphson method depends for convergence on the point of intersection of tangent with x-axis being closer to the root than the initial point. In the interval [-0.3, 0] there must be a TV of f(x) so that f'(x) = 0 and the point of intersection may be far from initial point; so iteration may lead to a different root.

2

For bisection, f(-1.1) = 0.080;

$$f(-1) = -0.281$$

$$f(-1.05) = -0.124$$

$$f(-1.075) = -0.208;$$

1

$$f(-1.0875) = 0.024$$

1

Hence root lies in [-1.0875. - 1.075].

1

2004 Applied Mathematics

Advanced Higher – Section C

Advanced Higher Applied Mathematics 2004 Solutions for Section C (Mechanics 1 and 2)

C1.
$$\mathbf{r}(t) = (2t^2 - t)\mathbf{i} - (3t + 1)\mathbf{j}$$

$$\Rightarrow \mathbf{v}(t) = (4t - 1)\mathbf{i} - 3\mathbf{j}$$

$$\Rightarrow |\mathbf{v}(t)| = \sqrt{(4t - 1)^2 + 9}$$
1
When the speed is 5,
$$(4t - 1)^2 + 9 = 25$$

$$(4t - 1)^2 = 16$$

$$4t - 1 = \pm 4$$

$$t = \frac{5}{4} \operatorname{seconds} (\operatorname{as} t > 0).$$
1
C2. (a)
$$\mathbf{v}_F = 25\sqrt{2} (\cos 45^\circ \mathbf{i} + \sin 45^\circ \mathbf{j}) = 25(\mathbf{i} + \mathbf{j})$$

$$\mathbf{r}_F = 25t(\mathbf{i} + \mathbf{j}) = \operatorname{as} \mathbf{r}_F(0) = \mathbf{0}$$

$$\mathbf{v}_L = 20\mathbf{j}$$

$$\mathbf{r}_L = 20t\mathbf{j} + \mathbf{c}$$
But $\mathbf{r}_L(0) = 10\mathbf{i} \operatorname{so} \mathbf{r}_L = 10\mathbf{i} + 20t\mathbf{j}$
The position of the ferry relative to the freighter is
$$\mathbf{r}_F - \mathbf{r}_L = (25t - 10)\mathbf{i} + 5t\mathbf{j}$$
(b) When $t = 1$

$$|\mathbf{r}_F - \mathbf{r}_L| = \sqrt{15^2 + 5^2}$$

$$= \sqrt{250} = 5\sqrt{10} \operatorname{km}$$
1
C3. (a) Using $T = \frac{2\pi}{\omega} \Rightarrow 8\pi = \frac{2\pi}{\omega} \Rightarrow \omega = \frac{1}{4}$.
Maximum acceleration $= \omega^2 a$

$$\frac{1}{2} = \frac{1}{16} a \Rightarrow a = 4$$
(b) Maximum speed $= \omega a = \frac{1}{4} \times 4 = 1$.
Using
$$v^2 = \omega^2 (a^2 - x^2)$$

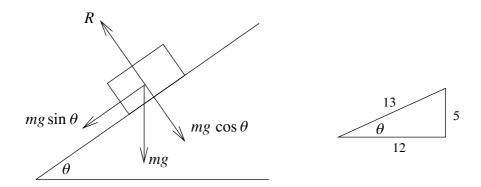
$$\left(\frac{1}{2}\right)^2 = \frac{1}{16} (16 - x^2)$$

$$4 = 16 - x^2$$

$$x = +2\sqrt{3} \operatorname{m}$$
1

1

C4.



Resolving perp. to plane: $R = mg \cos \theta$ Parallel to the plane (by Newton II)

$$ma = -\mu R - mg \sin \theta$$

$$= -\mu mg \cos \theta - mg \sin \theta$$

$$a = -g (\mu \cos \theta + \sin \theta)$$

$$= \frac{-(5 + 12\mu)g}{13}$$
2E1

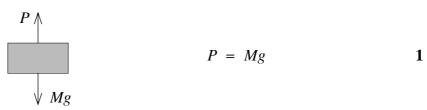
Using $v^2 = u^2 + 2as$

$$0 = gL - \frac{2(5 + 12\mu)gL}{13}$$

$$gL = \frac{2(5 + 12\mu)gL}{13}$$

$$10 + 24\mu = 13 \Rightarrow \mu = \frac{1}{8}$$
 2E1

C5.



Combined mass = M + 0.01M = 1.01M.

By Newton II

$$1.01Ma = (P + 0.05P) - 1.01Mg$$

$$1.01Ma = 1.05Mg - 1.01Mg$$

$$1.01a = 0.04g$$

$$1$$

$$a = \frac{4}{101}g (\approx 0.3) \text{ m s}^{-2}$$
1

C6. (i) By conservation of energy, the speed of block A (v_A) immediately before the collision is given by

$$v_A = \sqrt{2gh}.$$

By conservation of momentum, the speed of the composite block (v_C) after the collision is given by

$$2mv_C = mv_A$$

$$v_C = \frac{1}{2}\sqrt{2gh}$$
1M,1

1

1

(ii) By the work/energy principle

Work done against friction = Loss of KE + Change in PE

$$F \times h = \frac{1}{2}(2m) \cdot \frac{1}{4} \cdot 2gh + 2mg \times \frac{1}{2}h$$
 1,1
 $F = \frac{mg}{2} + mg$
 $F = \frac{3}{2}W \text{ since } W = mg.$ 1

(a) The equations of motion give

$$\ddot{y} = -g \qquad \mathbf{v}(0) = V \cos \alpha \mathbf{i} + V \sin \alpha \mathbf{j}$$

$$\dot{y} = -gt + V \sin \alpha$$

$$y = V \sin \alpha t - \frac{1}{2}gt^2$$
1

Maximum height when $\dot{y} = 0 \implies t = \frac{V}{g} \sin \alpha$, and so

$$H = V \sin \alpha \times \frac{V}{g} \sin \alpha - \frac{1}{2} g \frac{V^2}{g^2} \sin^2 \alpha$$

$$= \frac{V^2}{2g} \sin^2 \alpha$$
1

(b) (i)

C7.

$$h = \frac{V^2}{2g} \sin^2 2\alpha$$

$$= \frac{V^2}{2g} 4 \sin^2 \alpha \cos^2 \alpha$$

$$= \frac{2V^2}{g} \sin^2 \alpha (1 - \sin^2 \alpha)$$

$$= 4H \left(1 - \frac{2gH}{V^2}\right) \quad \text{since } \sin^2 \alpha = \frac{2gH}{V^2}$$
1

(ii) Since h = 3H

$$3H = 4H(1 - \sin^2 \alpha)$$

$$\frac{3}{4} = 1 - \sin^2 \alpha$$

$$\sin^2 \alpha = \frac{1}{4}$$

$$\sin \alpha = \pm \frac{1}{2}$$

$$\Rightarrow \alpha = \frac{\pi}{6} \text{ and so } 2\alpha = \frac{\pi}{3}$$

C8. (a) Radius of horizontal circle $r = L \sin 60^\circ = \frac{\sqrt{3}}{2}L$.

$$AB = \frac{r}{\sin 30^{\circ}} = 2 \times \frac{\sqrt{3}}{2} L = \sqrt{3} L$$

Extension of AB, $x = (\sqrt{3} - 1)L$

Tension in AB,
$$T_1 = \frac{\lambda x}{L}$$

$$= 2(\sqrt{3} - 1)mg.$$

(b) Resolving vertically (where T_2 is the tension in BC)

$$T_1 \cos 30^\circ = mg + T_2 \cos 60^\circ$$

1

1

$$\frac{\sqrt{3}}{2} \times 2(\sqrt{3} - 1)mg = mg + \frac{1}{2}T_2$$

$$T_2 = (6 - 2\sqrt{3} - 2)mg$$

= $2(2 - \sqrt{3})mg$

(c) Resolving horizontally (using L = 1)

$$T_1 \sin 30^\circ + T_2 \sin 60^\circ = m \left(\frac{\sqrt{3}}{2}\right) \omega^2$$

$$\frac{1}{2} \times 2\left(\sqrt{3} - 1\right)mg + \frac{\sqrt{3}}{2} \times 2\left(2 - \sqrt{3}\right)mg = m\left(\frac{\sqrt{3}}{2}\right)\omega^2$$

$$(2\sqrt{3} - 2 + 4\sqrt{3} - 6)g = \sqrt{3}\omega^2$$

$$(6\sqrt{3} - 8)g = \sqrt{3}\omega^2$$

$$\omega^2 = \frac{2(3\sqrt{3} - 4)g}{\sqrt{3}}$$

$$\omega = \sqrt{\frac{2(3\sqrt{3} - 4)g}{\sqrt{3}}}$$
 1

$$m\frac{dv}{dt} = -mkv^{3}$$

$$v\frac{dv}{dx} = -kv^{3}$$

$$\frac{dv}{dx} = -kv^{2}$$
1

Separating the variables and integrating gives

$$\int v^{-2} dv = \int -k \, dx$$

$$\Rightarrow -v^{-1} = -kx + c$$
1

$$At x = 0, v = U$$

$$-U^{-1} = c$$

so

$$v^{-1} = kx + U^{-1}$$

$$v = \frac{U}{1 + kUx}.$$

(ii) Now $v = \frac{dx}{dt}$, so

$$\frac{dx}{dt} = \frac{U}{1 + kUx}$$

1

$$\int (1 + kUx) dx = \int U dt$$

$$x + \frac{1}{2}kUx^2 = Ut + c_1$$

Since x = 0 when t = 0, then $c_1 = 0$

$$kUx^2 + 2x = 2Ut$$

(iii)

$$V = \frac{1}{2}U \implies \frac{1}{2}U(1 + kUx) = U$$

$$\implies 1 + kUx = 2 \implies x = \frac{1}{kU}$$
1M,1

The time taken

$$2Ut = kU \frac{1}{k^2 U^2} + \frac{2}{kU} = \frac{3}{kU}$$

$$\Rightarrow t = \frac{3}{2kU^2}$$
1

2004 Applied Mathematics

Advanced Higher – Section D

Advanced Higher Applied Mathematics 2004 Solutions for Section D (Mathematics 1)

D1.
$$(4x - 5y)^4 = (4x)^4 - 4 \times (4x)^3 (5y) + 6 \times (4x)^2 (5y)^2 - 4 \times (4x) (5y)^3 + (5y)^4$$
 3E1
$$= 256x^4 - 1280x^3y + 2400x^2y^2 - 2000xy^3 + 625y^4.$$
 1 When $y = \frac{1}{x}$, the term independent of x is 2400.

D2.
$$y = x^{2} \ln x$$

$$\frac{dy}{dx} = 2x \ln x + x^{2} \cdot \frac{1}{x} = 2x \ln x + x$$

$$\frac{d^{2}y}{dx^{2}} = 2 \ln x + 2x \cdot \frac{1}{x} + 1 = 2 \ln x + 3$$

$$2E1$$

$$x \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 2x \ln x + 3x - 2x \ln x - x = 2x$$

$$1$$
Thus $k = 2$.

D3. (a)

There is no solution when $\lambda = \frac{9}{4}$.

(b) When $\lambda = 1$,

$$5c = 15 \Rightarrow c = 3$$

 $-4b + 21 = 25 \Rightarrow b = -1$
 $a - 1 - 6 = -6 \Rightarrow a = 1$
i.e. $a = 1, b = -1, c = 3$

D4.
$$x + 1 = u \Rightarrow dx = du$$
 1 for differentials $x = u - 1 \Rightarrow x^2 + 2 = u^2 - 2u + 3$.
$$\int \frac{x^2 + 2}{(x+1)^2} dx = \int \frac{u^2 - 2u + 3}{u^2} du$$
 1 for substitution
$$= \int 1 - \frac{2}{u} + 3u^{-2} du$$
 1 for simplifying
$$= u - 2 \ln|u| - 3u^{-1} + c$$
 1
$$= x - 2 \ln|x + 1| - \frac{3}{x+1} + c$$
 1

D5. (a)
$$\frac{(x-1)(x-4)}{x^2+4} = A + \frac{Bx+C}{x^2+4}$$
$$x^2 - 5x + 4 = Ax^2 + 4A + Bx + C$$
$$A = 1, B = -5, C = 0$$
$$\text{i.e.} \quad f(x) = 1 - \frac{5x}{x^2+4}.$$

(b) As
$$x \to \pm \infty$$
, $y \to 1$.
[No vertical asymptotes since $x^2 + 4 \neq 0$.]

(c)

$$f(x) = 1 - \frac{5x}{x^2 + 4}$$

$$f'(x) = -\frac{5(x^2 + 4) - 10x^2}{(x^2 + 4)^2} = 0 \text{ at S.V.}$$

$$\Rightarrow 20 - 5x^2 = 0 \Rightarrow x = \pm 2$$

$$\Rightarrow (2, -\frac{1}{4}) \text{ and } (-2, 2\frac{1}{4})$$
1

(d)
$$y = 0 \Rightarrow x = 1 \text{ or } x = 4.$$

Area = $-\int_{1}^{4} \left(1 - \frac{5x}{x^2 + 4}\right) dx$

$$= -\left[x - \frac{5}{2}\ln(x^2 + 4)\right]_{1}^{4}$$

$$= -\left[4 - \frac{5}{2}\ln 20\right] + \left[1 - \frac{5}{2}\ln 5\right]$$

$$= \frac{5}{2}\ln 4 - 3 = 5\ln 2 - 3 \text{ (acceptable but not required)}$$

$$\approx 0.47 \text{ (acceptable but not required)}$$

2004 Applied Mathematics

Advanced Higher – Section E

Advanced Higher Applied Mathematics 2004 Solutions for Section E (Statistics 1)

E1.	(a)	Stratified	1						
	(1.)	and Quota [or Quota (convenience)]	1						
	(b)	Approach (a) should be best	1						
		since (b) is not random (other forms e.g. Glasgow not typical	, biased) 1						
E2.	(a)	F~Bin(192, 0.002).	1 for distribution						
			1 for parameters						
	(b)	$P(F \geqslant 3) = 1 - P(F \leqslant 2)$	1						
		= 1 - (0.6809 + 0.2620 + 0.0501) $= 0.0070$	1 1						
		Notes: applying a Poisson distribution loses (at least) one modistribution loses two marks.	ark; a Normal						
	(c)	Approximate using the $Poi(0.384)$	1 for distribution						
	(-)	Fr	1 for parameters						
E3.	Assı	ume that yields are normally distributed.	1						
	Assume that the standard deviation is unchanged.								
		$\bar{x} = 404.2.$							
	A 95% confidence interval for the mean yield, μ , is given by:—								
	$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$								
		\sqrt{n}	1						
	404.	$2 \pm 1.96 \frac{10.}{\sqrt{5}}$							
		2 ± 8.8	1						
		395.4, 413.0).	-						
	•	fact that the confidence interval does not include 382	1						
	prov	vides evidence, at the 5% level of significance, of a	1						
	char	nge in the mean yield.							
E4.	TNE	E = 3% of 500 = 15	1						
		h maximum allowable standard deviation							
	P(w	veight < 485) = 0.025	1						
	\Rightarrow	$\frac{485 - 505}{\sigma} = -1.96$ $\sigma = \frac{20}{1.96} = 10.2$	1,1						
		σ_{20}	_						
	\Rightarrow	$\sigma = \frac{1.96}{1.96} = 10.2$	1						
		re will be a small probability of obtaining a content							
	weig	ght less than 470g with the normal model.	1						

E5. (a) P (Alaskan fish classified as Canadian)
$$= P(X > 120 \mid X \sim N(100,20^2)$$

$$= P(Z > \frac{120 - 100}{20})$$

$$= P(Z > 1)$$

$$= 0.1587$$
1
(b) The probability is the same as in (a) because of symmetry.
1
(c) P (Canadian origin | Alaskan predicted)
$$= \frac{P(Alaskan predicted and Canadian origin)}{P(Alaskan predicted)}$$

$$= \frac{P(Alaskan predicted but Canadian origin)}{P(Ala pred and Alaskan) + P(Ala pred but Canadian)}$$
1
$$= \frac{0.4 \times 0.1587}{0.6 \times 0.8413 + 0.4 \times 0.1587}$$
1,1
$$= \frac{0.06348}{0.50478 + 0.06348}$$

$$= 0.112.$$
1

Note: Alternative methods acceptable e.g. Venn or Tree Diagrams

2004 Applied Mathematics

Advanced Higher – Section F

Advanced Higher Applied Mathematics 2004 Solutions for Section F (Numerical Analysis 1)

F1.
$$f(x) = \ln(2-x)$$
 $f'(x) = \frac{-1}{(2-x)}$ $f''(x) = \frac{-1}{(2-x)^2}$ $f'''(x) = \frac{-2}{(2-x)^3}$ 1

Taylor polynomial is

$$p(1+h) = \ln 1 - h - \frac{h^2}{2} - \frac{2h^3}{6}$$
$$= -h - \frac{h^2}{2} - \frac{h^3}{3}$$

For $\ln 1.1$, h = -0.1 and p(0.9) = 0.1 - 0.005 + 0.00033 = 0.0953.

$$p(a + h) = \ln(2 - a) - \frac{1}{2 - a}h$$

1

Hence expect f(x) to be more sensitive in I_2 since coefficient of h is much larger.

F2. L(2.5)

$$= \frac{(2\cdot5 - 1\cdot5)(2\cdot5 - 3\cdot0)(2\cdot5 - 4\cdot5)}{(0\cdot5 - 1\cdot5)(0\cdot5 - 3\cdot0)(0\cdot5 - 4\cdot5)} \cdot 1\cdot737 + \frac{(2\cdot5 - 0\cdot5)(2\cdot5 - 3\cdot0)(2\cdot5 - 4\cdot5)}{(1\cdot5 - 0\cdot5)(1\cdot5 - 3\cdot0)(1\cdot5 - 4\cdot5)} \cdot 2\cdot412$$

$$+ \frac{(2\cdot5 - 0\cdot5)(2\cdot5 - 1\cdot5)(2\cdot5 - 4\cdot5)}{(3\cdot0 - 0\cdot5)(3\cdot0 - 1\cdot5)(3\cdot0 - 4\cdot5)} \cdot 3\cdot284 + \frac{(2\cdot5 - 0\cdot5)(2\cdot5 - 1\cdot5)(2\cdot5 - 3\cdot0)}{(4\cdot5 - 0\cdot5)(4\cdot5 - 1\cdot5)(4\cdot5 - 3\cdot0)} \cdot 2\cdot797 \cdot 2$$

$$= -\frac{1 \times 1\cdot737}{10} + \frac{2 \times 2\cdot412}{4\cdot5} + \frac{4 \times 3\cdot284}{2\cdot5 \times 2\cdot25} - \frac{1 \times 2\cdot797}{18}$$

$$= -0\cdot1737 + 1\cdot0720 + 2\cdot3353 - 0\cdot1554 = 3\cdot078$$

F3.
$$\Delta^2 f_0 = \Delta f_1 - \Delta f_0 = (f_2 - f_1) - (f_1 - f_0) = f_2 - 2f_1 + f_0$$
 1

Maximum rounding error = $\varepsilon + 2\varepsilon + \varepsilon = 4\varepsilon$.

$$\Delta^2 f_0 = 2.618 - 2 \times 2.369 + 2.124 = 0.004$$

and
$$4\varepsilon = 4 \times 0.0005 = 0.002$$
.

$$\Delta^2 f_0$$
 appears to be significantly different from 0.

F4. (a) Difference table is:

(b)
$$p = 0.3$$

$$f(0.65) = 1.375 + 0.3(0.257) + \frac{(0.3)(-0.7)}{2}(-0.092)$$

$$= 1.375 + 0.077 + 0.010 = 1.462$$

2

2

1

(or, with p = 1.3, 1.023 + 0.458 - 0.019).

F5. Trapezium rule calculation is:

Hence $I_2 = 0.91$ or 0.9.

X	f(x)	m	$mf_1(x)$	$mf_2(x)$
1	1.2690	1	1.2690	1.2690
1.25	1.1803	2		2.3606
1.5	0.9867	2	1.9734	1.9734
1.75	0.6839	2		1.3678
2	0.2749	1	0.2749	0.2749
			3.5173	7.2457

Hence
$$I_1 = 3.5173 \times 0.5/2 = 0.8793$$
 and $I_2 = 7.2457 \times 0.25/2 = 0.9057$.

 $|\max \text{ truncation error }| = 1 \times 0.1092/12 \approx 0.009$

Expect to reduce error by factor 4.

With n strips and step size 2h, Taylor series for expansion of an integral I

With n strips and step size 2h, Taylor series for expansion of an integral I approximated by the trapezium rule is:

$$I = I_n + C(2h)^2 + D(2h)^4 + \dots = I_n + 4Ch^2 + 16Dh^4 + \dots$$
 (a)

With 2n strips and step size h, we have: $I = I_{2n} + Ch^2 + Dh^4 + \dots$ (b) 2

4(b) – (a) gives $3I = 4I_{2n} - I_n - 12Dh^4 + ...$ i.e. $I \approx (4I_{2n} - I_n)/3 = I_{2n} + (I_{2n} - I_n)/3$

i.e.
$$I \approx (4I_{2n} - I_n)/3 = I_{2n} + (I_{2n} - I_n)/3$$

$$I_R = (4 \times 0.9057 - 0.8793)/3 = 0.914$$

page 3

2004 Applied Mathematics

Advanced Higher – Section G

Advanced Higher Applied Mathematics 2004 Solutions for Section G (Mechanics 1)

G1.

$$\mathbf{r}(t) = (2t^{2} - t)\mathbf{i} - (3t + 1)\mathbf{j}$$

$$\Rightarrow \mathbf{v}(t) = (4t - 1)\mathbf{i} - 3\mathbf{j}$$

$$\Rightarrow |\mathbf{v}(t)| = \sqrt{(4t - 1)^{2} + 9}$$
1

When the speed is 5,

$$(4t - 1)^{2} + 9 = 25$$

$$(4t - 1)^{2} = 16$$

$$4t - 1 = \pm 4$$

$$t = \frac{5}{4} \text{ seconds } (as t > 0).$$

G2. (a)

$$\mathbf{v}_{F} = 25\sqrt{2} \left(\cos 45^{\circ} \mathbf{i} + \sin 45^{\circ} \mathbf{j}\right)$$

$$= 25 \left(\mathbf{i} + \mathbf{j}\right)$$

$$\mathbf{r}_{F} = 25t \left(\mathbf{i} + \mathbf{j}\right) \quad \text{as } \mathbf{r}_{F}(0) = \mathbf{0}$$

$$\mathbf{v}_{L} = 20\mathbf{j}$$

$$\mathbf{r}_{L} = 20t\mathbf{j} + \mathbf{c}$$

But
$$\mathbf{r}_L(0) = 10\mathbf{i} \text{ so } \mathbf{r}_L = 10\mathbf{i} + 20t\mathbf{j}$$

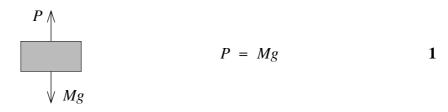
The position of the ferry relative to the freighter is

$$\mathbf{r}_F - \mathbf{r}_L = (25t - 10)\mathbf{i} + 5t\mathbf{j}$$

(b) When t = 1

$$|\mathbf{r}_F - \mathbf{r}_L| = \sqrt{15^2 + 5^2}$$
 1
= $\sqrt{250} = 5\sqrt{10} \text{ km}$ 1

G3.

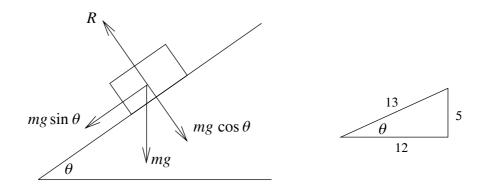


Combined mass = M + 0.01M = 1.01M.

By Newton II

$$1.01Ma = (P + 0.05P) - 1.01Mg$$
 1M,1
 $1.01Ma = 1.05Mg - 1.01Mg$
 $1.01a = 0.04g$ 1
 $a = \frac{4}{101}g (\approx 0.3) \text{ m s}^{-2}$ 1

G4.



Resolving perp. to plane: $R = mg \cos \theta$ Parallel to the plane (by Newton II)

$$ma = -\mu R - mg \sin \theta$$

$$= -\mu mg \cos \theta - mg \sin \theta$$

$$a = -g (\mu \cos \theta + \sin \theta)$$

$$= \frac{-(5 + 12\mu)g}{13}$$
2E1

Using $v^2 = u^2 + 2as$

$$0 = gL - \frac{2(5 + 12\mu)gL}{13}$$

$$gL = \frac{2(5 + 12\mu)gL}{13}$$

$$10 + 24\mu = 13 \Rightarrow \mu = \frac{1}{8}$$
 2E1

G5. (a) The equations of motion give

$$\ddot{y} = -g \qquad \mathbf{v}(0) = V \cos \alpha \mathbf{i} + V \sin \alpha \mathbf{j}$$

$$\dot{y} = -gt + V \sin \alpha$$

$$y = V \sin \alpha t - \frac{1}{2}gt^2$$

Maximum height when
$$\dot{y} = 0 \implies t = \frac{V}{g} \sin \alpha$$
, and so 1

$$H = V \sin \alpha \times \frac{V}{g} \sin \alpha - \frac{1}{2} g \frac{V^2}{g^2} \sin^2 \alpha$$

$$= \frac{V^2}{2g} \sin^2 \alpha$$
1

1

(b) (i)

$$h = \frac{V^2}{2g} \sin^2 2\alpha$$

$$= \frac{V^2}{2g} 4 \sin^2 \alpha \cos^2 \alpha$$

$$= \frac{2V^2}{g} \sin^2 \alpha (1 - \sin^2 \alpha)$$

$$= 4H \left(1 - \frac{2gH}{V^2}\right) \quad \text{since } \sin^2 \alpha = \frac{2gH}{V^2}$$
1

(ii) Since h = 3H

$$3H = 4H(1 - \sin^2 \alpha)$$

$$\frac{3}{4} = 1 - \sin^2 \alpha$$

$$\sin^2\alpha = \frac{1}{4}$$

$$\sin \alpha = \pm \frac{1}{2}$$

$$\Rightarrow \alpha = \frac{\pi}{6} \text{ and so } 2\alpha = \frac{\pi}{3}$$